Руководство по установке REDROOM

Оглавление

Требования к инфраструктуре
Введение
Общие требования к инфраструктуре 4
Требования к аппаратному обеспечению 5
Общие требования к аппаратному обеспечению 5
Требования к компонентам узлов серверной части: 5
Требования к компонентам узлов клиентской части: б
Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует системой управления программным комплексом: б
Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует гипервизор системной контейнерной виртуализации с удаленными графическими приложениями:7
Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует программно-определяемая система хранения пользовательских данных (если планируется отдельный серверный контур хранения):
Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует программно-определяемая система хранения резервных копий пользовательских данных:
Минимальные требования к аппаратным характеристикам клиентской части, на которой функционирует программное обеспечение для доступа в систему: 11
Требования к программному обеспечению и протоколам12
Серверная часть
Клиентская часть 12
Установка кластера LXD13
Введение
Установка сервиса
Запуск кластера для управляющих компонентов
Установка Redroom Manager19
Введение
Установка компонентов Manager
Запуск и настройка контейнеров Manager 20 База данных MariaDB 20

Настройка службы Redroom Manager Настройка прокси-сервера Nginx Настройка балансировщика нагрузка HAProxy Настройка службы keepalived Настройка остальных узлов кластера Настройка прокси-сервера Nginx Настройка балансировщика нагрузка HAProxy Настройка службы keepalived	24 25 25 27 29 29 30 30
Настройка сервиса Redroom SDN	31
Введение	31
Краткая информация о SDN	31
Требования к оборудованию и настройке Центральный сервис OVN Вычислительный узел с компонентами OVN Версии ПО:	32 32 33 33
Установка центральной части Создание контейнеров Настройка первого контейнера Настройка последующих контейнеров	33 33 33 35
Некоторые советы	36
Настройка кластера LXD Установка компонентов OVN Запуск компонентов OVN Настройка виртуального коммутатора Создание uplink-интерфейса Настройка доступа до OVN NB	36 36 37 37 37 39
Система управления Ceph	40
Введение	40
Добавление контейнера с компонентами управления Ceph Инициализация первого контейнера Инициализация остальных контейнеров Активация сервиса mgr Добавление диска в кластер Предоставление доступа к системе хранения Ceph вычислительным узлам	40 40 42 44 45 46

Требования к инфраструктуре

Введение

Как и любое другое программное решение, установка и запуск платформы Redroom требует выполнения определённых требований к инфраструктуре.

Общие требования к инфраструктуре

- Redroom может работать только при рабочей инфраструктуре DNS.
 В составе Redroom есть внутренний сервер DNS, который должен быть доступен из корпоративного DNS как отдельная зона, также он может работать самостоятельно. Использование IP в качестве адресов подключения не поддерживается.
- Redroom не поддерживает запуск и функционирование через нешифрованные соединения, так как по умолчанию использует протокол HTTP/2. Поэтому в продуктивных средах нужно использовать сертификаты валидных центров сертификации (общедоступных, частных или внутренних) для корректной работы протокола TLS. Использование самоподписанных сертификатов возможно только при тестовых инсталляциях.
- Каждый кластер LXD должен располагаться в своей подсети с соответствующим диапазоном IP-адресов. При взаимодействии между кластерами LXD должна использоваться сетевая маршрутизация. В отдельных случаях допускается использование единой сети для части или всех кластеров LXD, однако для этого должны быть веские технические и организационные причины.
- Каждый кластер LXD должен использовать валидный уникальный кластерный сертификат TLS, так как этот сертификат используется как средство аутентификации системы управления Redroom к этим кластерам.

Требования к аппаратному обеспечению

Общие требования к аппаратному обеспечению

- Все узлы, добавленные в один кластер, должны иметь одинаковую конфигурацию по всем основным ресурсам (СРU, RAM, количество дисков, сетевых интерфейсов и так далее). Включение узлов с различной конфигурацией в одном кластере официально не поддерживается, однако такую конфигурацию допустимо использовать для тестовых инсталляций.
- Поддерживается архитектура процессоров x86 64.
- Во всех типах кластеров LXD должно быть как минимум 3 узла для обеспечения сохранности кворума и надежности.
- В качестве дисков должны быть использованы устройства SSD с контроллером SATA или NVMe корпоративного/серверного уровня (в зависимости от требуемых скоростных характеристик и цен на конечные комплектующие). Использование дисков HDD возможно для систем резервного копирования и иных "холодных" данных:
 - о В SSD должна иметься возможность аварийного сброса буферизированных данных при отключении питания. Обычно для этих целей в SSD используют специальные конденсаторы.
 - о Для очень критичных данных необходимо использовать SSD с TLC-чипами памяти и BER не менее 10^-9.
 - о Для обычных данных или данных с достаточным количество реплик достаточно использовать SSD с MLC-чипами и BER не менее 10⁻⁷. Такие же диски рекомендуются использовать для дисков с операционной системой.

Требования к компонентам узлов серверной части:

- CPU:
 - о Intel Xeon или AMD Ерус для стандартных конфигураций;
 - о Для RWP-приложений при определенных ситуациях может быть рекомендована конфигурация с процессорами Intel Xeon W или AMD Threadripper (обычная версия или Pro) для поддержки высокой частоты ядер.
- GPU:
 - о Для поддержки 3D-ускорения рекомендуется использование карт AMD или Nvidia Consumer-уровня.

- о Для поддержки 3D-ускорения и вычислений CUDA/OpenCL рекомендуется использовать профессиональные карты AMD и Nvidia.
- о Для поддержки кодирования видеопотока используйте профессиональные карты Nvidia с поддержкой функций NVENC.

Требования к компонентам узлов клиентской части:

- CPU:

- o Intel Atom/Celeron или AMD Embedded на Zen.
- о Рекомендуется использование процессоров с поддержкой AES-NI.
- GPU:
 - о Встроенные решения Intel Graphics 600+, AMD Vega 3+ или Nvidia 730+.
 - о Рекомендуется поддержка аппаратного декодирования видеопотока. На данный момент такая поддержка имеется для Intel Graphics и AMD.

Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует системой управления программным комплексом:

- Количество узлов: не менее 3 серверов;
- Архитектура CPU: x86 64;
- Количество физических ядер CPU: не менее 8;
- Частота физических ядер CPU: не менее 2.0 Ггц;
- Объем оперативной памяти: не менее 16 ГБ;
- Частота оперативной памяти: не ниже DDR4 2666 МГц ЕСС;
- Количество системных дисков: не менее 1;
- Объем системного диска: не менее 120 ГБ;
- Тип системного диска: SSD;
- Объем диска для хранения данных контейнерной виртуализации: не менее 120 ГБ;
- Тип диска для хранения данных контейнерной виртуализации: SSD;

- Возможно использование RAID1/10, однако не рекомендуется использование RAID5/6 по причине низкой производительности записи в случае использования баз данных.
- Количество сетевых интерфейсов: не менее 2:
 - о mgmt сеть, предназначенная для общения между сервисами Redroom, для работы с кластерами LXD и соединения с клиентами Redroom (но не RWP). Скорость этого интерфейса должна составлять не менее 1Gbit/s.
 - о storage сеть, предназначенная для доступа к системе хранения Ceph. Скорость этого интерфейса должна составлять не менее 10Gbit/s.
 - о Допускается использование большего количества интерфейсов, например, для обеспечения отказоустойчивости сети или для дальнейшего разделения трафика.
- Сетевой интерфейс для контура управления: не менее 1 Гбит/сек;
- Сетевой интерфейс для контура передачи данных: не менее 10 Гбит/сек;
- Сетевой интерфейс удаленного администрирования серверным оборудованием: требуется;
- Клавиатура: требуется для локального администрирования;
- Мышь: требуется для локального администрирования;
- Монитор: требуется для локального администрирования.

Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует гипервизор системной контейнерной виртуализации с удаленными графическими приложениями:

- Количество узлов: не менее 3 серверов;
- Архитектура CPU: x86 64;
- Количество сокетов СРU: не менее 2;
- Количество физических ядер CPU: не менее 8;
- Частота физических ядер CPU: не менее 2.2 Ггц;
- Объем оперативной памяти: не менее 64 ГБ;
- Частота оперативной памяти: не ниже DDR4 2666 МГц ЕСС;
- Количество системных дисков: не менее 1;
- Объем системного диска: не менее 120 ГБ;
- Тип системного диска: SSD;

- Объем диска для хранения данных контейнерной виртуализации: не менее 1000 ГБ;
- Тип диска для хранения данных контейнерной виртуализации: SSD;
- Для повышения отказоустойчивости допустимо использование RAID1/10, однако следует избегать RAID5/6 из-за низкой производительности записи при случайном доступе.
- mgmt сеть, предназначенная для сервисов LXD кластера, через которые Redroom может отправлять им команды на выполнение:
 - о Интерфейс mgmt также должен быть использован для загрузки ОС по протоколу РХЕ;
 - о Скорость интерфейса должна составлять не менее 1Gbit;
 - о Количество интерфейсов: не менее 1;
- appnet сеть, предназначенная для доставки приложений через RWP до клиентов Redroom:
 - о Скорость интерфейса должна составлять не менее 10Gbit;
 - о Этот интерфейс должен поддерживать использование Jumbo Frame до 9000 байтов;
 - о Количество интерфейсов: не менее 1;
- storage сеть, предназначенная для доступа к системе хранения Ceph:
 - о Скорость интерфейса должна составлять не менее 10Gbit;
 - о Этот интерфейс должен поддерживать использование Jumbo Frame до 9000 байтов;
 - о Количество интерфейсов: не менее 1;
- Допускается использование единого сетевого интерфейса для appnet и storage сетей;
- Сетевой интерфейс удаленного администрирования серверным оборудованием: требуется;
- Графический ускоритель: встроенный или дискретный;
- Клавиатура: требуется для локального администрирования;
- Мышь: требуется для локального администрирования;
- Монитор: требуется для локального администрирования.

Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует программно-определяемая система хранения пользовательских данных (если планируется отдельный серверный контур хранения):

- На данный момент поддерживается только система хранения Ceph (блочный и файловый вариант хранения данных). Поддержка протоколов FibreChannel, iSCSI и сетевых файловых систем будет добавлена в будущих версиях.
- Количество узлов: не менее 3 серверов, Ceph должен хранить как минимум три копии пользовательских данных;
- Архитектура CPU: x86 64;
- Количество физических ядер CPU: не менее 8;
- Частота физических ядер CPU: не менее 2.2 Ггц;
- Объем оперативной памяти: не менее 32 ГБ;
- Частота оперативной памяти: не ниже DDR4 2666 МГц ЕСС;
- Количество системных дисков: не менее 1;
- Объем системного диска: не менее 120 ГБ;
- Тип системного диска: SSD;
- Количество дисков для хранения пользовательской информации: не менее 3;
- Объем диска для хранения пользовательской информации: не менее 500 ГБ;
- Тип диска для хранения пользовательской информации: SSD;
- Сайзинг системы хранения по количеству объема должен проводиться по расчетам необходимого количества пространства для хранения данных пользователей с учетом репликации и запаса на свободное место (20% от общей емкости системы хранения). К примеру, при наличии 100 пользователей и размером отдельного пользовательского каталога в 50GiB для каждого и при уровне репликации 3 требуется 100*50*3+(100*50*3*0.2)=18TiB. При использовании дисков размером в 500GiB получится 18/0.5=36 дисков.
- Сайзинг системы хранения по производительности выполняется индивидуально в зависимости от требований для каждого инстанса.
- Узлы системы хранения должны содержать как минимум три сетевых интерфейса:
- mgmt сеть, предназначенная для взаимодействия между мониторами Ceph и службами Ceph OSD, запущенные в узлах хранения.
 - о Интерфейс mgmt также должен быть использован для загрузки ОС по протоколу РХЕ;
 - о Скорость интерфейса должна составлять не менее 1Gbit/s;
 - о Количество интерфейсов: не менее 1;
- storage сеть, предназначенная для доступа к данным прикрепленных пользовательских каталогов сервисами RWP с запущенными приложениями:
 - о Скорость интерфейса должна составлять не менее 10Gbit/s;
 - о Этот интерфейс должен поддерживать использование Jumbo Frame (до 9000 байтов);
 - о Количество интерфейсов: не менее 1;
- storage-internal сеть, предназначенная для внутренней репликации между узлами хранения;

- Скорость интерфейса должна составлять величину, которая вычисляется путём умножения скорости интерфейса сети storage и количества узлов, куда необходимо отправить peплики данных (это число всегда равно количеству peплик минус 1). Если число peплик 3, а скорость интерфейса storage составляет 10Gbit/s, то минимальная скорость интерфейса storage-internal должна составлять не менее 10*(3-1)=20Gbit/s;
- о Этот интерфейс должен поддерживать использование Jumbo Frame (до 9000 байтов);
- о Количество интерфейсов: не менее 1;
- сетевой интерфейс удаленного администрирования серверным оборудованием: требуется;
- графический ускоритель: встроенный или дискретный;
- клавиатура: требуется для локального администрирования;
- мышь: требуется для локального администрирования;
- монитор: требуется для локального администрирования.

Минимальные требования к аппаратным характеристикам серверной части, на которой функционирует программно-определяемая система хранения резервных копий пользовательских данных:

- Для резервного копирования обязательно использование отдельной системы хранения Ceph. Ни в коем случае не храните данные резервного копирования в той же системе хранения, где хранятся сами данные пользователей.
- Резервные копии должны копироваться в файловую систему CephFS.
- Количество узлов: не менее 3 серверов;
- Архитектура CPU: x86 64;
- Количество физических ядер CPU: не менее 8;
- Частота физических ядер CPU: не менее 2.0 Ггц;
- Объем оперативной памяти: не менее 32 ГБ;
- Частота оперативной памяти: не ниже DDR4 2666 МГц ЕСС;
- Объем системного диска: не менее 120 ГБ;
- Тип системного диска: SSD;
- Количество дисков для хранения резервных копий пользовательской информации: не менее 8;

- Объем диска для хранения резервных копий пользовательской информации: не менее 1000 ГБ;
- Тип диска для хранения пользовательской информации: HDD;
- Количество сетевых интерфейсов: не менее 3;
- Сетевой интерфейс для контура управления: не менее 1 Гбит/сек;
- Сетевой интерфейс для контура передачи данных: не менее 10 Гбит/сек;
- Сетевой интерфейс для контура репликации данных: не менее 20 Гбит/сек;
- Сетевой интерфейс удаленного администрирования серверным оборудованием: требуется;
- Графический ускоритель: встроенный или дискретный;
- Клавиатура: требуется для локального администрирования;
- Мышь: требуется для локального администрирования;
- Монитор: требуется для локального администрирования.

Минимальные требования к аппаратным характеристикам клиентской части, на которой функционирует программное обеспечение для доступа в систему:

- Архитектура CPU: x86 64, ARMv8;
- Количество физических ядер CPU: не менее 2;
- Частота физических ядер CPU: не менее 1.0 Ггц;
- Объем оперативной памяти: не менее 2 ГБ;
- Частота оперативной памяти: не ниже DDR3 1333 МГц;
- Объем системного диска: не менее 32 ГБ;
- Тип системного диска: HDD;
- Количество проводных сетевых интерфейсов: не менее 1;
- Сетевой интерфейс для контура передачи данных: не менее 1 Гбит/сек;
- Количество беспроводных сетевых интерфейсов: не менее 1;
- Беспроводной сетевой интерфейс для контура передачи данных: не ниже WiFi 802.11n 2.4 ГГц;
- Графический ускоритель: встроенный или дискретный;
- Клавиатура: требуется;
- Мышь: требуется;
- Монитор: требуется.

Требования к программному обеспечению и протоколам

Серверная часть

- Операционная система
 - о Ubuntu 20.04+/22.04+ полная поддержка;
 - о Alt Linux 9, 10 планируется.
- Версия ядра: 5.х+ (рекомендуется 5.10+) о Для Ubuntu рекомендуется использовать generic-вариант ядра.
- Версия LXD: 4.19+
- Версия Ceph: 16.2.x+

Клиентская часть

- Операционная система
 - о Ubuntu 20.04+/22.04+ полная поддержка
 - о Alt Linux 9, 10 планируется.
- Версия ядра: 5.х (рекомендуется 5.10+)
 - о Для Ubuntu рекомендуется использовать lowlatency-вариант ядра.
- Версия LXD: 4.19+
- Графическое окружение:
 - о Для стандартной установки: КDE 5.18.х+
 - о Для маломощных машин: LXQt 0.12.х+

Установка кластера LXD

Введение

Перед установкой компонентов управления Redroom вначале необходимо подготовить кластеры LXD:

- кластер LXD с компонентами управления Redroom и все сервисов для работы с инфраструктурой (например, сервисы менеджера Ceph). Основным отличием этого кластера является наличие проекта LXD с названием manager, где будут запущены все управляющие компоненты Redroom.
- кластер или кластеры LXD, которые будут использоваться в качестве вычислительных кластеров.

Установка сервиса

Установка LXD для всех типов кластеров выполняются одинаково. LXD в Ubuntu доступен через пакетный менеджер Snap (в Ubuntu Server пакет LXD уже будет установлен). Это можно узнать по команде показа списка доступных приложений Snap:

snap list | grep lxd

В ответ вы получите примерно следующий вывод: lxd 5.0.1 21858 latest/stable canonical* -

Убедитесь, что версия LXD (второй столбец) равна 5.0.х (любая версия из ветки 5.0).

Запуск кластера для управляющих компонентов

Требования к кластеру

- Кластер управления должен содержать хотя бы три узла.
- Узел кластера должен содержать как минимум 50 ГБ свободного места для контейнеров управления.
- Должен иметься хотя бы один сетевой интерфейс, на базе которого можно создать управляющий интерфейс типа bridge.

Инициализация кластера

Основной командой инициализации кластера является выполнение команды

lxd init

Эта команда работает в интерактивном режиме: сервис спросит про данные хранения, настроит сетевую часть кластера и прочие настройки. Инициализацию нужно выполнить на всех узлах кластера.

Запуск инициализации на первом узле

Выберите один из узлов будущего кластера и запустите выше предло-женную команду.

MCIIII.	io itoMangy.
lxd :	nit

Запустится интерактивная сессия, которая настроит сервис LXD в узле. Список вопросов следующий:

- Would you like to use LXD clustering? (yes/no) [default=no]
 о Параметр определяет, в каком режиме сервис LXD будет запущен.
 - о Ответ: yes
- What IP address or DNS name should be used to reach this node? [default=node1.rr.local]
 - о Указанный адрес узла будет использован для подключения к сервису LXD другими инстансами кластера LXD.
 - о Ответ: укажите DNS или IP-имя узла в сети mgmt.
- Are you joining an existing cluster? (yes/no) [default=no]
 - о Параметр определяет, подключиться ли настраиваемому сервису LXD в уже существующий кластер.
 - о Ответ: по
- What name should be used to identify this node in the cluster? [default=dxl-zero]
 - о Указывает имя сервиса LXD в кластере.
 - о Ответ: укажите имя узла LXD в кластере. По умолчанию берется hostname.
- Setup password authentication on the cluster? (yes/no) [default=no]
 - о Включает парольную аутентификацию к кластеру LXD.
 - о Ответ: yes (в последующем этот параметр будет выключен).
- Trust password for new clients
 - о Параметр отвечает за указание пароля для аутентификации.
 - о Ответ: укажите пароль.
- Again
 - о Параметр отвечает за повторный набор пароля для аутентификации.
 - о Ответ: повторите указанный ранее пароль.
- Do you want to configure a new local storage pool? (yes/no) [default=yes]
 - о Параметр, отвечающий за создание локального хранилища для контейнера.
 - о Ответ: yes

- Name of the storage backend to use (dir, lvm, zfs, btrfs) [default=zfs] о Параметр типа локального хранилища. о Ответ: btrfs - Create a new BTRFS pool? (yes/no) [default=yes] о Параметр создание нового пула BTRFS. о Ответ: yes - Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no) [default=no] о Параметр использования имеющегося блочного дискового устройства. о Ответ: yes - Path to the existing block device о Параметр пути до блочного устройства. о Ответ: укажите полный путь до блочного устройства, расположенный в /dev. - Do you want to configure a new remote storage pool? (yes/no) [default=no] о Параметр добавления удаленного хранилища в кластер. о Ответ: по - Would you like to connect to a MAAS server? (yes/no) [default=no] о Параметр интеграции с сервисом MAAS. о Ответ: по - Would you like to configure LXD to use an existing bridge or host interface? (yes/no) [default=no] о Параметр настройки уже существующего бридж-интерфейса и его добавления в кластер. O OTBET: yes. - Name of the existing bridge or host interface о Параметр имени существующего бридж-интерфейса. о Ответ: укажите имя бридж-интерфейса. - Would you like stale cached images to be updated automatically? (yes/no) [default=yes]
 - о Параметр обновления закэшированных образов в автоматическом режиме.
 - о Ответ: yes
 - Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]
 - о Параметр предоставления файла preseed с данными кластера
 - о Ответ: по

На этом инициализация первого узла закончится.

Инициализация остальных узлов

Для включения остальных узлов в кластер нужно пройти два больших шага:

- В первом узле нужно сгенерировать токен для аутентификации в вычислительном кластере.
- В остальных узлах нужно пройти шаги инициализации.

Генерация токена аутентификации

В первом узле запустите команду добавления узла в кластер:

lxc cluster add \$ИМЯ УЗЛА

Вместо имени узла нужно указать hostname добавляемого узла. Для каждого узла токен необходимо генерировать отдельно.

Токен будет выглядеть примерно так:

eyJzZXJ2ZXJfbmFtZSI6ImR4bC1vbmUiLCJmaW5nZXJwcmludCI6ImVkZDk5NGY2NG JlMTg3OGFiMmI4YjJkNDBjYzc4NDFlMTczMGU1YmMxZDBhMWYwYjAwNGMyNDA1YTQz MGM1OTAiLCJhZGRyZXNzZXMiOlsiMTAuMjM2LjY0LjI0Nzo4NDQzIl0sInNlY3JldC I6IjFhNzE0Y2IwYjNiMGU2NDM2NzkyYjU5MDE1ZGRkM2Y3MWJhZDdjODdlZjU1NTdl MjNjMTExZDZjN2I4YmVjOTgifQ==

Добавление узла в кластер

Для добавления узла в кластер необходимо провести инициализацию сервиса вычислений.

В добавляемом узле запустите команду:

lxd init

Список вопросов интерактивного режима:

- Would you like to use LXD clustering? (yes/no) [default=no]
 о Параметр определяет, в каком режиме сервис LXD будет запущен.
 - o Otbet: yes
- What IP address or DNS name should be used to reach this node? [default=node2.rr.local]
 - о Указанный адрес узла будет использован для подключения к сервису LXD другими инстансами кластера LXD.
 - о Ответ: укажите DNS или IP-имя узла в сети mgmt.
- Are you joining an existing cluster? (yes/no) [default=no]
 - о Параметр определяет, подключиться ли настраиваемому сервису LXD в уже существующий кластер.
 - о Ответ: yes
- Do you have a join token? (yes/no/[token]) [default=no]:
 - о Параметр использования токена аутентификации.
 - о Ответ: укажите токен в поле ввода
- All existing data is lost when joining a cluster, continue? (yes/no) [default=no]

- о Параметр очистки сервиса виртуализации перед добавлением кластера.
- о Ответ: yes.
- Choose "source" property for storage pool "local"
 - о Параметр определения пути для локального пула хранения.
 - о Ответ: укажите блочное дисковое устройство.
- Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]
 - о Параметр предоставления файла preseed с данными кластера
 - о Ответ: по

Через некоторое время интерактивный режим закончится.

Проверка добавления узла в кластер

После добавления узла проверьте, что он действительно успешно добавился в кластер. Для этого выполните команду

lxc cluster list

Вы увидите примерно такой вывод:

_____+ ---+ | NAME | URL | ROLES | AR-CHITECTURE | FAILURE DOMAIN | DESCRIPTION | STATE | MESSAGE _____+ ---+ | dxl-one | https://node2.rr.local:8443 | database-standby | | default | | ONLINE | Fully operx86 64 ational | _____+ ---+ | dxl-zero | https://node1.rr.local:8443 | database-leader | | default x86 64 | ONLINE | Fully oper-ational | | database

+				
+			-+	
	+	-+	++	
	1	1		
+				

Инициализация всего кластера закончится после добавления всех узлов.

Установка Redroom Manager

Введение

Redroom Manager — это приложение, предназначенное для управления инфраструктурой по предоставлению удалённых графических приложений. Экосистема Redroom сама по себе содержит достаточно большое количество компонентов, и Manager берет на себя функцию "дирижера", регистрируя эти компоненты в базе данных и позволяя взаимодействовать между собой и конечными пользователями.

Эта статья расскажет про установку Manager и его первичный запуск.

Установка компонентов Manager

Как и все остальные модули, Redroom Manager поставляется в виде готового образа для запуска в качестве контейнера LXD. Отдельно Manager не распространяется. Поэтому первым шагом необходима настройка хостовой системы для запуска контейнеров.

Настройка хостовой системы

На данный момент в качестве хостовой системы используется ОС Ubuntu 22.04.

Для хостовой системы жестких требований нет, но нужно обратить внимание на следующее:

- Минимальная версия LXD: 5.0
- Для сети у вас должен быть настроен bridge (для обычного варианта сетевой настройки) или иметь отдельный физический интерфейс (для SDN).
- Нужно как минимум три физических узла с одинаковой хостовой системой.

Также хостовая система должна быть настроена в соответствие <u>с этой</u> статьёй.

Добавление службы образов Manager

DevBand официально предоставляет свою службу образов для Manager, которая выполняет роль репозитория стабильных версий Manager. Для получения доступа к образам необходимо следующее:

 Служба образов DevBand запущена с использованием TLSаутентификации. Часть образов распространяются без TLSаутентификации. - Адрес сервиса образа должен быть добавлен в remote сервисов LXD в управляющих узлах:

lxc remote add redroom-manager-1.0 https://images.devband.ru:8443
--protocol=lxd

 Для получения доступа к публичным образам, к команде выше добавьте параметр --public.

После добавления remote при команде получения образов появятся образы Manager:

lxc image list

Запуск и настройка контейнеров Manager

После получения доступа к образам можно приступить к запуску Manager.

Вначале необходимо создать первый контейнер, в котором первоначально будет запущен Manager. Для этого в первом узле выполните:

lxc launch redroom-manager-1.0/stable redroom-manager-node1

По умолчанию ни одна служба, связанная с менеджером, внутри контейнера не запустится, так как их необходимо предварительно настроить.

Сам контейнер содержит следующие сервисы:

- База данных MariaDB, предназначенный для хранения состояния платформы.
- Сама служба redroom-manager, состоящий из фреймворка Django и ASGI-сервера HyperCorn.
- Nginx в качестве https proxy-сервера к ASGI-серверу.
- Балансировщик нагрузки haproxy.
- Менеджер виртуального IP-адреса (VIP) keepalived.

Контейнер содержит и прочие вспомогательные службы, их описание можно найти в описании к архитектуре платформы Redroom.

Пока дальнейшие команды должны выполняться в одном из контейнеров.

База данных MariaDB

Перед созданием базы данных крайне рекомендуем использовать отдельное устройство для хранения данных баз данных MariaDB.

Вначале в пуле хранения default во всех управляющих узлах нужно создать диск минимальным размером в 10 GiB. Для этого нужно выполнить (default здесь - имя пула хранения данных, настроенный при первом запуске):

lxc storage volume create default redroom-manager-db

Этот диск потом нужно добавить в конфигурацию контейнера LXD:

lxc config device add redroom-manager-nodel redroom-manager-db
disk source=default:redroom-manager-db path=/var/lib/mysql

Затем зайдите внутрь контейнера:

lxc shell redroom-manager-node1

Теперь откройте файл /etc/mysql/conf.d/99-cluster.cnf. Он будет иметь следующее содержимое:

```
[mysqld]
max_connections = 8192
binlog_format = ROW
default-storage-engine = innodb
innodb_autoinc_lock_mode = 2
bind-address = 127.0.0.1
innodb_flush_log_at_trx_commit = 0
wsrep_slave_threads = 1
sync_binlog = 0
gtid_domain_id = $DIFFERENT_GTID_DOMAIN_ID
# WREP
wsrep_on = OFF
wsrep_provider = /usr/lib/galera/libgalera_smm.so
wsrep_cluster_address = gcomm://$FIRST_NODE,$SEC-
OND_NODE,$THIRD_NODE
```

```
wsrep_cluster_name = redroom
wsrep_sst_auth = redroom:redroom
wsrep_gtid_mode = ON
wsrep_gtid_domain_id = $SAME_WSREP_GTID_DOMAIN_ID
log_slave_updates = ON
wsrep_sst_method = rsync
wsrep_node_address = $CURRENT_NODE_ADDR
wsrep_node_name = $CURRENT_NODE_NAME
```

Из того, что следует поменять:

- gtid_domain_id уникальный для каждого узла идентификатор узла GTID, обычное число от 1 и выше.
- wsrep_on включает кластер репликации Galera для MariaDB, нужно указать "ON".
- wsrep_cluster_address все адреса кластеров Galera.
- wsrep_sst_auth указывает параметры аутентификации узлов Galera. Можно менять на любые значения, главное, чтобы они были одинаковы для всех узлов.
- wsrep_gtid_domain_id одинаковый для всех узлов идентификатор GTID кластера.
- wsrep_node_address определяет IP-адрес узла кластера. Требуется указать IP, полученный контейнером.
- wsrep_node_name указывает на имя узла кластера. Лучше указать доменное имя узла.

Пример настройки конфигурации:

```
[mysqld]
```

max connections = 8192

```
binlog_format = ROW
```

```
default-storage-engine = innodb
```

```
innodb autoinc lock mode = 2
```

bind-address = 127.0.0.1

innodb flush log at trx commit = 0

```
wsrep slave threads = 1
```

```
sync_binlog = 0
gtid_domain_id = 11
# WREP
wsrep_on = ON
wsrep_provider = /usr/lib/galera/libgalera_smm.so
wsrep_cluster_address =
gcomm://zero.redrum.loc,one.redrum.loc,two.redrum.loc
wsrep_cluster_name = redroom
wsrep_sst_auth = redroom:redroom
wsrep_gtid_mode = ON
wsrep_gtid_domain_id = 42
log_slave_updates = ON
wsrep_sst_method = rsync
wsrep_node_address = 10.236.64.126
wsrep node name = dxl-zero.redroom.local
```

Далее создайте начальные базы данных:

mariadb-install-db

После этой настройки запустите новый кластера Galera:

galera new cluster

Если все ОК, то команда молча завершит свою работу. Статус работы базы можно проверить через systemd:

systemctl status mariadb

Не лишним будет выполнить скрипт активации безопасных настроек СУБД:

```
mariadb-secure-installation
```

Настройка службы Redroom Manager

Вначале для Manager создайте базу данных в MariaDB. Для этого запустите следующие команды:

mariadb -e "CREATE DATABASE redroom;"

mariadb -e "GRANT ALL PRIVILEGES ON redroom.* TO 'redroom'@'localhost' IDENTIFIED BY 'your password'";

Далее нужно настроить файл /etc/redroom/db.conf. Изначально он выглядит так:

[client] database = redroom user = redroom password = redroom

default-character-set = utf8

В ней смените на пароль, который был указан при предоставлении прав внутри СУБД:

[client] database = redroom user = redroom password = your_password

default-character-set = utf8

Перейдите в каталог с Manager:

cd /srv/redroom

Вначале выполните миграцию базы:

python3 manage.py migrate

Соберите статичные данные:

python3 manage.py collectstatic

Наконец, создайте суперпользователя:

python3 manage.py createsuperuser

Настройка службы завершена, запустите его:

systemctl start redroom-manager

Так же поместите службу в список автозапуска:

systemctl enable redroom-manager

Настройка прокси-сервера Nginx

Для лучшей производительности и безопасности мы в платформе используем промежуточный до самого Manager прокси-сервер на базе Nginx. Его по умолчанию не нужно настраивать, его просто нужно запустить:

systemctl start nginx

И поместить в автозапуск:

```
systemctl enable nginx
```

Отметим лишь, что конфигурация для Manager находится по пути /etc/nginx/conf.d/redroom.conf.

Настройка балансировщика нагрузка НАРгоху

Для настройки балансировщика нагрузки требуется изменить файл /etc/haproxy/haproxy.conf. По умолчанию он выглядит так:

```
global
maxconn 81920
tune.ssl.default-dh-param 2048
pidfile /run/haproxy.pid
stats socket /run/haproxy.sock level admin
ssl-default-bind-ciphersuites
TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY130
5_SHA256
ssl-default-bind-options no-sslv3 no-tlsv10 no-tlsv11 no-tlsv12
no-tls-tickets
defaults
mode http
option http-use-htx
option forwardfor
timeout connect 5s
```

```
timeout client 5s
  timeout server 5s
frontend rr nginx frontend
  mode http
  bind $VIP ADDRESS:443 ssl crt /etc/redroom/tls/main.pem alpn
h2,http/1.1
  http-request add-header X-Forwarded-Proto "https"
  default backend rr nginx backend
backend rr nginx backend
 mode http
 server node1 $FIRST SERVER DNS NAME:8443 check send-proxy-v2 ssl
verify none
  server node2 $SECOND SERVER DNS NAME:8443 check send-proxy-v2
ssl verify none
 server node3 $THIRD SERVER DNS NAME:8443 check send-proxy-v2 ssl
verify none
listen stats
  bind $IP STATS:8080
  stats enable
 stats uri /status/
  stats realm "Redroom HAPRoxy Stats"
  stats auth $NAME:$PASSWORD
```

Здесь нужно поменять:

- в frontend bind нужно поменять адрес привязки \$VIP_ADDRESS
 на виртуальный IP-адрес, выбранный для платформы. Необходимо использовать DNS-имя с резолвингом на этот адрес.
- Далее в backend server нужно указать DNS-имена всех экземпляров Manager.
- B listen stats bind нужно указать DNS-имя сервера, где запущен HAProxy.

После настройки запустите службу НАРгоху:

systemctl start haproxy

Так же добавьте сервис в автозапуск:

systemctl enable haproxy

Настройка службы keepalived

Последняя основная служба, требующая настройки — это служба виртуального IP-адреса keepalived. По умолчанию его конфигурация выглядит так:

```
global_defs {
  router_id $ROUTER_ID
}
vrrp_instance $INSTANCE_NAME {
  state BACKUP
  priority 100
  interface eth0  # Network card
  virtual_router_id $VIRTUAL_ROUTER_ID
  advert_int 1
  authentication {
    auth_type PASS
    auth_pass $PASSWORD
```

```
}
virtual_ipaddress {
  $VIP_ADDRESS/32  # The VIP address
}
```

Тут нужно сменить следующие части:

- router_id ID роутера keepalived в виде строки текста. Должен быть одинаковый во всех узлах кластера и не совпадать с ID других кластеров keepalived.
- virtual_router_id числовой ID роутера. Тоже должен быть одинаковым для всех узлов кластера и не совпадать с ID других.
- auth_pass \$PASSWORD укажите пароль для взаимодействия между узлами keepalived. Должен быть одинаковым во всех узлах.
- \$VIP_ADDRESS здесь необходимо указать виртуальный IP-адрес.
 /32 всегда должен иметься в адресе.

Запустите службу keepalived:

systemctl start keepalived

Добавьте службу в автозагрузку:

systemctl enable keepalived

На этом настройка первого узла кластера завершается.

Проверьте вход в веб-панель Redroom. Для этого в своем веб-браузере загрузите адрес

https://VIP ADDRESS/admin

Вы должны получить страницу приглашения на вход. Наберите данные суперпользователя и зайдите в основную страницу администрирования платформы.

Настройка остальных узлов кластера

Их настройка состоит в копировании полученных в первом узле конфигурационных файлов, небольших изменений в этих копиях и запуска самих служб.

Настройка MariaDB

Вначале не забудьте, как и в случае первого узла, создать отдельный диск для базы данных.

Далее скопируйте содержимое файла /etc/mysql/conf.d/99-cluster.cnf с первого узла, и измените адрес узла в конфигурации:

wsrep node address = \$CURRENT NODE ADDR

wsrep node name = \$CURRENT NODE NAME

После этого запустите службу MariaDB:

systemctl start mariadb

После чего добавьте службу в автозапуск:

systemctl enable mariadb

Haстройка Redroom Manager

Здесь нужно скопировать полученный файл /etc/redroom/db.conf с первого узла без изменений.

Затем нужно запустить службу Manager:

systemctl start redroom-manager

И поместить в автозагрузку:

systemctl enable redroom-manager

Настройка прокси-сервера Nginx

Дополнительная настройка Nginx на остальных инстансах так же не требуется, просто запустите сам прокси-сервер:

systemctl start nginx

И поместите его в автозагрузку:

systemctl enable nginx

Настройка балансировщика нагрузка НАРгоху

Тут так же необходимо взять конфигурацию HAProxy с первого узла и поместить на оставшиеся по пути /etc/haproxy/haproxy.conf. В ней нужно изменить лишь DNS-имя контейнера в listen stats, предназначенный для показа статистики.

После чего нужно запустить НАРгоху:

systemctl start haproxy

И поместить в автозагрузку:

systemctl enable haproxy

Настройка службы keepalived

Здесь так же нужно взять полученный конфигурационный файл с первого узла, после чего запустите службу keepalived:

systemctl start keepalived

И поместить службу в автозагрузку:

systemctl enable keepalived

На этом основная настройка Manager заканчивается. При добавлении новых контейнеров Manager в кластер повторите все те же шаги, что были указаны в этом разделе.

Настройка сервиса Redroom SDN

Введение

Redroom по умолчанию использует функции виртуализации сетей гипервизора с помощью сервиса программно-определяемых сетей, основанные на технологиях проекта Open Virtual Network.

Настройка сервиса делится на две части:

- Запуск центрального части сервиса SDN, который называется ovn-central. Данный сервис доступен в официальном репозитории DevBand Images по алиасу "rr-net".
- Настройка вычислительных кластеров для доступа к базе данных SDN и построению виртуальных сетей.

Краткая информация о SDN

Базовая архитектура решения представлена здесь.

Комментарий по компонентам:

- Redroom Manager это веб-сервис платформы. Этот компонент инициализирует основные команды по управлению сетями.
- Manager Cluster это вычислительный кластер, который содержит основные компоненты системы управления платформой, в том числе Manager.
- OVN Northbound DB (OVN NB) это база данных по данным северных интерфейсов, предоставляемый сервисом OVN.
- ovn-northd это сетевой сервис OVN, предоставляющий механизм доступа к OVN NB.
- OVN Southbound DB (OVN SB) это база данных по данным южных интерфейсов, предоставляемый сервисом OVN.
- Compute Cluster это вычислительный кластер для запуска конечных контейнеров.
- ovn-controller это компонент OVN, который предоставляет виртуальному контроллеру доступ к OVN SB.

- ovs-vswitchd и ovsdb-server это компоненты виртуального контроллера Open vSwitch.
- Containers конечные пользовательские контейнеры.

Нужно отметить некоторые моменты:

- OVN NB/SB запускаются в Manager Cluster в виде обычного общего контейнера с использованием штатного образа.
- В продуктивной среде экземпляров OVN NB/SB должно быть как минимум три.
- В качестве адресов узлов кластера OVN NB/SB по умолчанию должны быть использованы имена DNS, так как в конфигурации сервиса OVN внутри контейнера нужно указывать адреса всех экземпляров кластера и они должны быть статичны. IP-адреса использовать допустимо, однако необходимо, что экземпляры кластера OVN всегда имели одни и те же адреса.
- Один кластер OVN NB/SB можно использовать для нескольких вычислительных кластеров. При этом разрешается использование подсетей с пересекающими диапазонами, так как разделение сетей происходит по тегам сетевых туннелей Geneve.
- В каждом узле вычислительного кластера должен быть отдельный неуправляемый интерфейс (физический или типа мост) для доступа к внешним сетям и другим виртуальным сетям OVN (так называемый uplink-интерфейс, на схеме не указано).
- Вычислительный кластер должен иметь доступ до OVN NB по сети management.

Требования к оборудованию и настройке

Центральный сервис OVN

- OVN с NB/SB особых требований к оборудованию не возлагает.
 Сам дистрибутив предоставляется в виде преднастроенного образа контейнера.
- Настоятельно рекомендуется производить периодическое создание снимков и резервных копий приложением Recovery, так как информация о сетях в NB/SB является критичной.

- Основное требование: публичные порты OVN NB и SB должны доступны через сеть management.

Вычислительный узел с компонентами OVN

- Для нормального функционирования компонентов OVN вычислительного узла требуется как минимум 2 интерфейса.
 - о Первый интерфейс предназначен для доступа к сети management, через который вычислительный кластер и виртуальный коммутатор сможет взаимодействовать с центральным сервисом OVN.
 - о Второй интерфейс требуется для реализации так называемого ненастроенного uplink-интерфейса, позволяющий OVN маршрутизировать виртуальные сети между собой, а также предоставляющие доступ к внешним сетям, в частности, к Интернету.
 - о Uplink-интерфейс не может использоваться для иных целей, например, для сети системы хранения.

Версии ПО:

- OVN не должен иметь версию ниже 22.03.

Установка центральной части

Создание контейнеров

Установка базы данных OVN NB/SB сводится к получению образа и указанию адресов экземпляров кластера OVN Central.

Запустите три контейнера на базе образа devband:rr-network в управляющем кластере Manager:

lxc launch devband:rr-net rr-nb-sb-0 lxc launch devband:rr-net rrnb-sb-1

lxc launch devband:rr-net rr-nb-sb-2

После запуска контейнеры получат записи во внутренней зоне DNS, вид их записей зависят от настроек инсталляции.

Настройка первого контейнера

По умолчанию сервис ovn-central не запустится, он требует дополнительно настройки. Зайдите в оболочку первого контейнера:

lxc shell rr-nb-sb-0

Откройте файл /etc/default/ovn-central и измените его с помощью следующего шаблона:

```
OVN_CTL_OPTS= \
    --db-nb-addr=<MGMT_ADDR_C1> \
    --db-nb-create-insecure-remote=yes \
    --db-sb-addr=<MGMT_ADDR_C1> \
    --db-sb-create-insecure-remote=yes \
    --db-nb-cluster-local-addr=<CLSTR_ADDR_C1> \
    --db-sb-cluster-local-addr=<CLSTR_ADDR_C2> \
    --ovn-northd-nb-
db=tcp:<MGMT_ADDR_C1>:6641,tcp:<MGMT_ADDR_C2>:6641,tcp:<MGMT_ADDR_
C3>:6641 \
    --ovn-northd-sb-
db=tcp:<MGMT_ADDR_C1>:6642,tcp:<MGMT_ADDR_C2>:6642,tcp:<MGMT_ADDR_
C3>:6642
```

Здесь требуется указать:

- db-nb-addr это публичный адрес базы данных NB. Нужно указать DNS-имя или постоянный IP-адрес с адресом в сети management.
- db-sb-addr это публичный адрес базы данных SB. Нужно указать DNS-имя с адресом в сети management.
- db-nb-cluster-local-addr это внутренний адрес репликации базы NB. Может иметь адрес в сети management и совпадать с db-nb-addr, но рекомендуется использовать адрес в отдельной изолированной сети.
- db-sb-cluster-local-addr это внутренний адрес репликации базы NB. Может иметь адрес в сети management и совпадать с db-sb-addr, но рекомендуется использовать адрес в отдельной изолированной сети.

- ovn-northd-nb-db это адреса всех экземпляров кластеров OVN
 NB. Адреса в этой опции должны совпадать с тем, что указано в db-nb-addr для соответствующего экземпляра.
- ovn-northd-sb-db это адреса всех экземпляров кластеров OVN
 SB. Адреса в этой опции должны совпадать с тем, что указано в db-sb-addr для соответствующего экземпляра.

После указания этих параметров запустите сервис ovn-central:

systemctl enable ovn-central

systemctl start ovn-central

Проверьте, что сервис ovn-central успешно запустился:

systemctl status ovn-central

Настройка последующих контейнеров

Настройка оставшихся контейнеров почти ничем не отличается от настройки первого. Главное изменение — это указание первого узла как источника репликации. Конфигурация должны выглядеть так:

```
OVN_CTL_OPTS=" \
    --db-nb-addr=<local> \
    --db-nb-cluster-remote-addr=<server_1> \
    --db-nb-create-insecure-remote=yes \
    --db-sb-addr=<local> \
    --db-sb-cluster-remote-addr=<server_1> \
    --db-sb-create-insecure-remote=yes \
    --db-nb-cluster-local-addr=<local> \
    --db-sb-cluster-local-addr=<local> \
    --db-sb-cluster-local-addr=<local> \
    --db-sb-cluster-local-addr=<local> \
    --ovn-northd-nb-
db=tcp:<server_1>:6641,tcp:<server_2>:6641,tcp:<server_3>:6641 \
    --ovn-northd-sb-
db=tcp:<server_1>:6642,tcp:<server_2>:6642,tcp:<server_3>:6642"
```

- В параметрах db-nb-addr и db-sb-addr необходимо указать свои адреса из сети management, которые предоставлены контейнерам.
- В параметрах db-nb-cluster-local-addr и db-sb-cluster-localaddr необходимо указать свои адреса из изолированной сети для кластеризации OVN Central или указать адреса в сети management, соответствующие параметрам db-nb-addr и db-sbaddr соответственно.

После сохранения настроек в каждом из оставшихся контейнеров нужно запустить сервис onv-central:

systemctl enable ovn-central

systemctl start ovn-central

На этом настройка центрального сервиса OVN завершена.

Некоторые советы

- Как уже был сказано выше, желательно для кластеризации данных экземпляров OVN использовать свою внутреннюю изолированную сеть. Для этого просто необходимо создать полностью виртуальную сеть и добавить его в контейнеры OVN в качестве второй сети.
- OVN NB и OVN SB содержит всю виртуальную топологию сетей и критически важно сохранить в случае сбоев. Поэтому рекомендуется периодически создавать снимки и, реже, резервные копии контейнеров OVN.

Настройка кластера LXD

Настройка кластера LXD сводится к настройке виртуального коммутатора и добавления uplink-интерфейса.

Поддерживается как запуск OVN при создании нового кластера, так и переход кластера LXD на OVN (без сохранения сетей).

Установка компонентов OVN

Перед настройкой OVN в список репозиториев узлов должен быть добавлен репозиторий Cloud Archive Yoga для Ubuntu Focal (для OVN в Ubuntu Jammy используются штатные пакеты). Для этого нужно во всех узлах кластера LXD создать файл /etc/apt/sources.list.d/cloudarchive-yoga.list:

```
echo 'deb http://ubuntu-cloud.archive.canonical.com/ubuntu focal-
updates/yoga main' > /etc/apt/sources.list.d/cloudarchive-
yoga.list
```

Обновите метаданные репозиториев:

apt update

После чего установите пакет ovn-host:

apt install -y ovn-host

Запуск компонентов OVN

В каждом кластере необходимо запустить сервис ovn-host:

systemctl enable ovn-host

systemctl enable ovn-host

Убедитесь, что сервис успешно запустился:

systemctl status ovn-host

Настройка виртуального коммутатора

Сам виртуальный коммутатор вручную настраивать не нужно, достаточно указать адреса OVN SB:

```
ovs-vsctl set open_vswitch . external_ids:ovn-re-
mote=tcp:<MGMT_ADDR_C1>:6642,tcp:<MGMT_ADDR_C2>:6642,tcp:<MGMT_ADD
R_C3>:6642 \
ovs-vsctl set open_vswitch . external_ids:ovn-encap-type=geneve
ovs-vsctl set open_vswitch . external_ids:ovn-encap-
ip=<MGMT_ADDR_LOCAL>
```

Вместо MGMT_ADDR_LOCAL укажите локальный адрес узла в сети management.

Создание uplink-интерфейса

Для маршрутизации сетевых пакетов между различными сетями OVN (как между собой, если не используются network peers, так и с внешними

сетями) требуется так называемый uplink-интерфейс. Этот интерфейс не должен никак настраиваться операционной системой и передан кластеру LXD как есть. В качестве uplink-интерфейса может быть передано физическое устройство, bond, а также мост-интерфейс (bridge).

Перед добавлением выбранного интерфейса в uplink убедитесь, что этот интерфейс на всех узлах кластера не содержит IPv4- или IPv6адрес. Иначе при попытке добавить сеть OVN на базе этого uplinkинтерфейса вы получите ошибку:

Error: Cannot start network as uplink network interface "\$interface_name" has one or more IP addresses configured on it

Вначале во всех узлах кластера LXD нужно добавить данные uplinkинтерфейса:

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=<machine_name_1>

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=<machine_name_2>

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=<machine name 3>

lxc network create UPLINK --type=physical parent=<uplink_interface> --target=<machine name 4>

Заметьте, что для каждой машины можно указать uplink-интерфейс с различными именами, однако настоятельно рекомендуется унифицировать имена интерфейсов в ОС узлов перед добавлением. При добавлении этих данных сеть UPLINK будет в статусе Pending.

Далее необходимо инициализировать сеть UPLINK:

```
lxc network create UPLINK --type=physical \
    ipv4.ovn.ranges=IPv4START-IPv4END \
    ipv6.ovn.ranges=IPv6START-IPv6END \
    ipv4.gateway=IPv4_GW_ADDR \
    ipv6.gateway=IPv6_GW_ADDR \
    dns.nameservers=DNS ADDR
```

Нужно отметить следующие моменты:

- ipv{4,6}.ovn.ranges диапазон IP-адресов для виртуальной сети OVN. Эти адреса используются для адресации точек соединения сетевых туннелей.
 - о Пример: 10.5.1.2-10.5.1.251
- ipv{4,6}.gateway это шлюз, который будет использован адресами в ovn.ranges для маршрутизации в другие сети.
 - о Пример: 10.5.1.1/24
- dns.nameservers это список DNS-серверов, можно указать до трёх через запятую:
 - о Пример: 10.3.1.2,8.8.8.8

Данная команда фактически создаст сеть UPLINK, его статус изменится на Created.

Настройка доступа до OVN NB

Кластер LXD должен иметь доступ до OVN NB, что позволит создавать записи о создаваемых сетях в базе данных OVN, которые дальше через OVN SB будут применяться на конечных виртуальных коммутаторах.

Для этого необходимо запустить следующую команду на любом узле кластера LXD):

```
lxc config set network.ovn.northbound_connection
tcp:<MGMT_ADDR_C1>:6641,tcp:<MGMT_ADDR_C2>:6641,tcp:<MGMT_ADDR_C3>
:6641
```

Система управления Ceph

Введение

Репозиторий образов DevBand содержит контейнеры для предустановленными компонентами системы управления Ceph. В этой статье описана установка и настройка части управления и добавление блочных устройств в Ceph.

Добавление контейнера с компонентами управления Ceph

Инициализация первого контейнера

В одном из кластеров управления запустите контейнер на базе образа с меткой rr-stor-mgr:

lxc launch redroom-manager-1.0/rr-stor-mgr ceph-node-1

Зайдите в окружение контейнера:

lxc shell ceph-node-1

Откройте файл /etc/ceph.conf. Он должен выглядеть примерно так:

```
[global]
fsid =
mon initial members =
mon host =
public network =
cluster network =
cephx_require_signatures = cephx
cephx_cluster_require_signatures = cephx
min_alloc_size = 16384
```

```
osd journal size = 1024
osd pool default size = 3
osd pool default min size = 2
osd crush chooseleaf type = 1
# https://docs.ceph.com/en/latest/security/CVE-2021-20288/
auth_allow_insecure_global_id_reclaim = false
```

В пустые строки нужно ввести данные:

- fsid. Уникальный идентификатор кластера. Укажите комбинацию UUID4.
- mon initial members. Список имен узлов кластера. Должно совпадать с именами контейнеров. Для примера здесь принято, что три контейнера управления Ceph будут иметь имена ceph-node-1, ceph-node-2 и ceph-node-3.
- mon host. IP-адрес монитора. Необходимо указать адрес интерфейса контейнера (в сети mgmt).
- public network. Определение публичной подсети в формате CIDR. Необходимо указать подсеть сети mgmt.
- cluster network. Определение подсети репликации данных Ceph в формате CIDR. Для компонентов управления этот параметр игнорируется, но в информационных целях укажите подсеть репликации данных. По умолчанию она равна 169.254.0.0/16.

После указания всех параметров перезапустите сервис ceph-mon:

systemctl restart ceph-mon@ceph-node-1

После запуска монитора проверьте статус установки:

ceph -s

Ответ будет выглядеть примерно так:

cluster:

id: 8a8cd0a4-1680-43f6-a084-fd411a122d16

health: HEALTH_OK

```
services:
  mon: 1 daemons, quorum ceph-node-1 (age 6s)
  mgr: no daemons active
  osd: 0 osds: 0 up, 0 in
data:
  pools: 0 pools, 0 pgs
  objects: 0 objects, 0 B
  usage: 0 B used, 0 B / 0 B avail
  pgs:
```

Инициализация остальных контейнеров

После инициализации первого контейнера необходимо поднять оставшиеся. Каждый инстанс компонентов управления нужно поднимать по очереди.

Вначале запустите второй контейнер:

```
lxc launch redroom-manager-1.0/rr-stor-mgr ceph-node-2
```

Зайдите в окружение контейнера:

lxc shell ceph-node-2

Откройте файл /etc/ceph/ceph.conf. Он должен выглядеть примерно так:

```
[global]
fsid =
mon initial members =
mon host =
public network =
cluster network =
```

```
cephx_require_signatures = cephx
cephx_cluster_require_signatures = cephx
cephx_sign_messages = cephx
min_alloc_size = 16384
osd journal size = 1024
osd pool default size = 3
osd pool default min size = 2
osd crush chooseleaf type = 1
# https://docs.ceph.com/en/latest/security/CVE-2021-20288/
auth_allow_insecure_global_id_reclaim = false
```

Конфигурация должна совпадать с тем, что было указано в первом контейнере, кроме:

- mon_host. В этом параметре нужно указать свой IP-адрес контейнера.

После запуска монитора проверьте статус установки:

ceph -s

Ответ будет выглядеть примерно так:

```
[global]
fsid =
mon initial members =
mon host =
public network =
cluster network =
cephx_require_signatures = cephx
```

```
cephx_cluster_require_signatures = cephx
cephx_sign_messages = cephx
min_alloc_size = 16384
osd journal size = 1024
osd pool default size = 3
osd pool default min size = 2
osd crush chooseleaf type = 1
# https://docs.ceph.com/en/latest/security/CVE-2021-20288/
auth allow insecure global id reclaim = false
```

Повторите эти шаги для третьего контейнера.

Активация сервиса mgr

Для полноценной работы компонентов управления необходима активация сервиса mgr.

Создайте каталог для mgr в первом контейнере:

mkdir -p /var/lib/ceph/mgr/ceph-mgr-ceph-node-1

Внутрь этого каталога добавьте ключ mgr:

ceph auth get mgr."ceph-node-1" -o /var/lib/ceph/mgr/ceph-mgrceph-node-1/keyring

После этого запустите сервис mgr:

systemctl status ceph-mgr@ceph-node-1

Проверьте статус сервиса mgr. Запустите команду статуса кластера с фильтром строк, связанный со статусов сервиса mgr:

ceph -s | grep 'mgr:'

Вывод будет выглядеть примерно так:

mgr: ceph-node-1(active, since 2m)

Готово, сервис запущен.

Запустите сервис mgr и в остальных узлах, они будут работать в режиме standby. Их настройка идентична.

Добавление диска в кластер

После настройки компонентов управления Ceph необходимо добавить блочные устройства.

Для этого в физическом узле с дисками необходимо установить компоненты Ceph OSD:

apt -y install ceph-osd

Откройте файл/etc/ceph/ceph.confи скопируйте конфигурацию из контейнера мониторов как есть. Сохраните файл.

Отформатируйте дисковое устройство:

ceph-volume raw prepare --bluestore --data /dev/mapper/system-ceph

Произведите активацию диска:

/usr/sbin/ceph-volume activate --osd-id 0

Где 0 — это порядковый номер диска. Для каждого добавленного диска ID нужно увеличивать на 1.

После активации диска в статусе кластера должна обновиться информация о доступных устройствах OSD:

```
cluster:
id: 8a8cd0a4-1680-43f6-a084-fd411a122d16
health: HEALTH_OK
services:
    mon: 2 daemons, quorum ceph-node-1, ceph-node-2, ceph-node-3
(age 6s)
    mgr: ceph-node-1(active, since 2m), standbys: ceph-node-2,
ceph-node-3
    osd: 1 osds: 1 up, 1 in
data:
```

```
pools: 0 pools, 0 pgs
objects: 0 objects, 0 B
usage: 0 B used, 0 B / 0 B avail
```

Предоставление доступа к системе хранения Ceph вычислительным узлам

Для предоставления доступа к пулам Ceph с вычислительных узлов необходимо выполнить следующие шаги:

```
apt -y install ceph-common
```

pgs:

Откройте файл /etc/ceph/ceph.conf и перенесите конфигурацию Ceph с контейнера компонентов управления.

Так же с контейнеров управления скопируйте ключ по пути /etc/ceph/ceph.client.admin.keyring и по тому же пути поместите в вычилистельных узлах.